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A dynamical system will be called a system with alternation if its 
operating conditions change periodically in such a way that the structure 
of the system and the applied forces have one form on the interval 0 < 
t< r1. and a different form on the interval ZI < t < T. The process of 
the alternation of these conditions is repeated with a period T = const, 
which is called the period of alternation. 

Among systems with alternation one can list pulse systems, continuous 
control systems, electric systems with rectifiers, electromagnetic appa- 
ratuses with saturation, and others [ l-4 1. 

To each of the intervals into which the period of alternation is di- 
vided, there corresponds some system of differential equations with vari- 
able coefficients, which change during a given period of alternation as 
well as from one period to the next. With the aid of these systems of 
equations it is possible to construct one system of differential equa- 
tions with variable coefficients which is valid for any instant of time. 
In many problems it is, however, advantageous to make use of the above- 
mentioned alternating systems of differential equations, because the co- 
efficients of these equations usually have a more simple form than those 
of the single equation. 

1. Equations of motion. For the study of a system with alterna- 
tion it is advisable to go over from alternating systems of differential 
equations to systems of finite difference equations which can be obtained 
in the following way. 

Let us begin the consideration of the motion at some instant of time 
nr -I- E, where O< E < rl, while R is an arbitrary integer. During the 
time interval nr + E < t < nr + rl, the motion is described by a system 
of linear differential equations with variable coefficients 
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ij + i bjk(t)Zk = Xj (I?) 

R=l 

(i = 1, . . , r) (1.1) 

Here zi(j = 1, . . . , r) are phase coordinates of the system, the x.(t) 
are given external forces. The system of scalar equations (1.1) can ie 
replaced by the matrix equation 

k + b (t) z = 5 (t) 
(1.2) 

(2 = II zj II* b (t) = II bjk (t) /Iv X (t) = iI Xj (411) 

‘Ihe solution of the matrix equation (1.2) has the following form: 

2 (2) = L (t, ‘2’5 + E) 2 (nr + E) + \ L (t, r;) x (6) & (1.3) 
n++E 

Here o(t) is the fundamental matrix for the homogeneous matrix equa- 
tion obtained from (1.2) when x(t) I 0. lhe inverse of this matrix we de- 
note by 0-l. Ihe function L(t, 5) = 11 Ljk(t, t) 11 represents a matrix 
weight function for the system of differential equations (1.1). 

In accordance with (1.3), the elements of the matrix z(t) have the 
form 

2~ (1) = x Lpk (t, 122 + E) zk (?lr + E) + \ 2 ‘$A (h k) 5k (k) d6 

k=l n;+ E k=l 

@=I, . . . , r) (1.4) 

At the time when t = nr + r1 the phase coordinates zP will have the 
form 

ns +r, r 

‘tl, E) xk (6) & (p==1, “‘3 r, (1.5) 

In the next time interval nr + r 1 < t < (n + 1)r the motion of the 
system will be described by the differential equations 

ii + 2 Cjk(t) z,Q = S, (1) 
k-l 

(i= 1, . , r) (1.G) 
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The system of scalar equations (1.6) is equivalent to the matrix 
equation 

z + c (t) 2 = s (l), Cc CL) = II cjk CL) II7 s CL) = II sj Ct) Ii) (1.7) 

The differential matrix equation (1.7) has the solution 

2 (4 = M (L, 721 + Q) 27 (IZZ + Zl) + \ M (t, E) s (E) dj (1.8) 
TIT+ .  ‘I, 

Here M(t, 0 = )) Me,(t, [) I\ is a matrix weight function of the system 
(1.6). The elements of the matrix z(t) are, by '(1.8), equal to 

At the end of the interval considered, i.e. at the instant of time 
t = nr + 7, the phase coordinates of the system will take on the values 

zj ((n + 1) T) = 2 Mjp ((12 + 1) ~1 ~7.z + ~1) zp (nt + ~1) + 
I*=1 

(n+ lb )‘ 

Substituting the values zP(m + rl> from (1.5) into (l.lO), we reduce 
these relations to the following form: 

Zj ((n + 1) T) = jj i Mjp ((n+l)T, nt+l,)L@(nT+vr, nT+E)Zfi\nT+E)+ 
h'=l &Zl 

+ i Mjp ((n + 1) 

nr+r, P 
1, nz + 71) 

s l!fl 
L,k (nr + 9, 9 Xk (3 dE + 

p.=l n++Ek=l 

(n+J)r p 

+ \ 2 Mjp ((n + 1) z~ E) s!i (E) 6 (; = 1, . . . , 1.) (1.11) 

nr$r,P==l 

On the time interval (n + 1)r < t < (n + 1)r + E, which ends at the 
moment (n + 1)r + E that differs from the initial time nr + 6 by one 
period of alternation, we have the differential equations (1.1). The 
phase coordinates of the system will vary, in accordance with (1.4), in 
the following way: 

2, (t) = $j Lvj (t9 (n + 1) T> zj ((n + 1) T> + 5 (E) 4 
j=l 

(v = 1, . . . , r) (1.12) 
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At time t = (n + l)r + c the phase coordinates zy take on the follow- 
ing values: 

zv ((n + 1) z + E) = i Lj ((n + 1) t + E, (n + 1) z) zj ((n f l)t)+ 
j=l 

(n +l)r +E r 

f Lj ((n + 1) t + ET E) Xj (6) 4 (v = 1,. . ..1.) (1.13) 

I$ the substitution of sj((n + l)r) from (1.11) into (1.13), these 
relations can be reduced to the form 

2” ((n + $1 t + 4 + 2 (Q;+ (nz + &) Zk (nt + E) = A-.,:‘: (115 -j- E) 
k=l 

(06 E G Tl v=l,...,l.) (i.14) 

where 

avk* (nt + E) = -i EL,j ((n + 1) t f E, (n + 1) T) Mjp ((n -ki)ty~~t i-tl) X 
j=l I*==1 

:< L,& (TZT -;- n, TlT + E) (1.15) 

n + 1) 't + E, (n + 1) T) Mjp ((n + l)~, nt + ZI)X 
j=l p=1 

nT+T* P 

x 
s 23 

Ll’k (nt + Tl, E) 51; (E) & -t 

nT+r k=l 

+ i L,j ((n $ I) T f ET (IT f I) T) “‘{“- i Mjy ((n -k 1) T, $,)s*(;) dE + 
j=l nT+r, I*=1 

(n+l)=+E r 
I 
4 2 

L,,j (Cr2 + 1) lZ + E, E) “j (E) G (1.16) 
(n+l)T j=1 

Let us now try to obtain for 6, on the interval 7 I < 6 < 7, relations 
analogous to the relations (1.14). 

On the time interval 717 + E < t < (n + 117 we have the differential 
equations (1.6). I n accordance with (1.9) the phase coordinates zP will 
change in agreement with the law 
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At the time t = (n + 1)~ the functions z,(t) take on the values 

Z,L ((n + 1) T) = 2 Mph. ((n + 1) 2, nz + E) Z/i (n5 + E) + 
k=l 

(n Tl)' P 

+ \ 2 M,k ((n + I) z, k) + (t) dr; (p = 1, . . . ,r) (1.18) 
,,;+ E k=l 

On the adjoining time interval (n + 1)r < t < (n + 1)~ + r we will 
have the differential equations (l.l), and the change of the phase co- 
ordinates will take place, in accordance with (1.4), by the following 
law: 

zj CL) = i Ljp Ct, Cn + I) T, z!~.((n + I) z, t- 
1 

\ i Ljp Ctt E) 5p (E) dZ 
p=1 (n ;I); !*=I 

(i = 1, . , r) (1.19) 

At the moment t = (n + 1)r + r 1 the values of the phase coordinates, 
by (1.19) and (1.18), will be 

Zj ((n + I) z + zl) 

+ i Ljp ((n + I) T + Zl, (n + 1) T)'nfl" i hgpk ((n + 1) t, E) sk (E,)dt+ 
p=1 TIT+ E k=l 

(II+ 1): 77, P 

Ljp ((n + I) ‘c + ~1, E) x1,. (3 dj (i = 1, . , r) (1.20) 

In the time interval (n + 1)r + rl < t < (n + 1)r + 6 we have the 
differential equations (1.6), and the law of the change of the phase co- 
ordinates is, in accordance with (1.9), the following: 

ZV (t) = i Mvj (t, (TX + I) r + Tl> Zj ((n + I) z + rl) + 
j=l 

1 r 

-+ 
s ?- 

Mvj (tl E) sj (E) dE (Y=l,...,r) (1.21) 
(TL+l)r++, ]=I 

At the instant t = (n + 1)r + 6 the values of the functions z,(t) 

are 
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2” ((n + I) t + 4 = i M”j ((n + I) z+ El n + 1) T~TI )  Zj ((n f l)t+ TI)+ ( 
j=1 

(n+1wi+ i- 

I 

s 2 
1 Mvj ((n + I) t + 8, c) sj (E) @ (v=l,...,r) 

(n.+l)T+r, j=1 (1.22, 

Substituting the values zj((n + 1)r + rl) from (1.20) into (1.22), 
these relations become 

2” ((n + I) z + E) + B Q*‘: (nt + E) Zp (nt f E) = x’,“” (nT + E) 

k=l 

(1.23) 

Here 

CL”/,.** (VZ + E) = - i i M,j ((n + 1) t + E, (n + 1) z + Zl) x 

j=l p=1 

x Lj, ((n + 1) z + Zl, (n + 1) T) qrh. ((72 + 1) r, nt + s) (1.24) 

_Jl’v’:* (nt + E) = i i Mvi ((n + 1) T + E, (n + 1) t t n) x 

j=l !*=I 

(nt1)r r 

XLj,, ((n + I) IT + n, (n + 1) T) \ 2 Al:,k ((12 t 1) 57 E) Sk (WE + 
d ?ITSE k=l 

+ i M,j((lZ + 1) t + E, (?2 + 1) t + 'cl) 

(n+l)*Tf-, P 

\ x Lj:l((n + l)T + Tl,<)>< 

j=l (n+1 )I p =1 

(n+l)s+E r 

x $2 (9 G + 2 Mvj ((n + 1) t + E, 5) Sj (g) dj (1.25) 

nus, in accordance with (1.14) and (1.23), we have the following dis- 
played relations if 6 lies in the interval 0 < E 6 r, which is equal to 
the period of alternation: 

2, ((n + I) ‘C + E) + i Q,. (nr + E) Z/,. (IZT + E) = x, (nz + E) (1%) 
li=l 

(Of&<<, v=l,...,r) 

Here 
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uvk(nr + e) = uvk* (nz + e) 1 (zl+ - e) + avk** (nz + e) 1 (e - a+) 
(1.27) 

X, (nt + e) = Xv* (nz + e) 1 (nf - e) + Xy** (nt + e) 1 (e - 2i+) 
(1.28) 

0 whent<O 
I(4 = ( 1 whent>O 

‘Ibe relations (1.26) connect the values of the functions Z,(V = 1, 
. . . , r) and the instants of time nr + 6 and (n + 1)r + E , which differ 
from each other by one period of alternation. Here n is an arbitrary 
integer, while the quantity E can take on any value in the interval 
066 <T. 

‘Ibe relations (1.26) are valid for any value of the argument 

t=62+& (0 = [+I) 
where 6 is the integer part of t/r. ‘lbese relations can, therefore, be 
rewritten in the form 

2, (t + T) + 2 a/k (t) Zk (t) = X” (t) 
I(=1 

(Y = 1,. . . , 1.) (1.30) 

‘Ibe relations (1.30) represent difference equations describing the 
given system with alternation. 

In the solution of the system of difference equations (1.30) it is 
necessary to give a law describing the solution functions zj( t) on the 
time interval 0 < t < r . By setting n = E = 0 in Expressions (1.4) and 
(1.91, we find that in the interval 0 < t < r 

2 (t> = z* (t) (1.31) 

where z* is a matrix whose elements have the form 

zj* tt) = {B [Ljk (t, 0) 1 (zl+ - t) + 5 Mj, (t,zl)Lpk (Zl,O) X 
k=l p=1 

X 1 (t - ‘cl+ )] zk (0) + { i Ljk (t, E) 2k (8 (%I (tl+ - t> + 

o k=l 
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+ 5 i Mjp Ctf E) sp 65) @I] I tt - Tl+ )} I CT - t, (i=I,...,r)(1.32) 
T, P"=l 

2. Solution of a system of linear difference equations 
with variable coefficients. The system of scalar difference equa- 
tions (1.30) is equivalent to the matrix equation 

2 (t + T) + a (q 2 (0 = x (0 

(a (t> = II U.Jk (0 II 7 x (0 = II xv (t) II ) 
(2-l) 

Let us denote by e(t) the fundamental matrix for the homogeneous 
matrix equation 

2 (t + y> + a (t) 2 (t) = 0 

The columns of the matrix 0(t) will be linearly independent particular 
solutions of this equation; the matrix 0(t) will therefore satisfy the 
equation 

8 (t + T) + a (t) 8 (t) = 0 (24 

'Ihe general solution of Equation (2.1) can be obtained by the method 
of variations of arbitrary constants. For this purpose we write 

2 (t) = e (4 x (t> (2.3) 

where fit> is a column matrix to be determined. Substituting Expression 
(2.3) into Fquation (2.1), we obtain 

e (t + 4 x (t + 4 + Q (0 0 (Q x (t) = x (t) 
or 

e (t + 7) [X (t) -b X (t + T) - x @)I f u (t) 8 (t) x (t) = x (t) (2.4) 

Taking into account the relation (2.2), one can reduce Equation (2.4) 
to the form 

e (t + T) AX (t) = X (t), or Ax (t) = 8-r (t + z) X (t), (2.5) 

where 8-l (t) is the inverse of the matrix e(t). From (2.5) it follows 
[ 5 1 that 

x (t) = i 8 -1 (t -j- z - it) x (t - it) + A (t) (2.Q 
i=l 
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where, in accordance with (1.29), 6 is the integer part of t/r, while 
A(t) is a periodic function (of period r) to be determined. 

Making use of the change i = 6 - j + 1 of the index of summation, we 
transform Expression (2.6) to the form 

x (t) = i 0-l (t - 6~ + Jo) X (t - 6~ + /‘t - r) + A (t) (2.7) 
j=l 

Expression (2.3) will take on the form 

z (t) = i 8 (t) 0-l (t - 6t + Jo) X (t - 192 + it - z) + 8 (t) A (t) (2.8) 
j=l 

In the interval 0 < t < r the first term on the right-hand side of 
(2.8) will vanish. In order that the second term on the right-hand side 
of (2.8) may, in accordance with (1.31), coincide with t*(t) in this 
time interval, it is necessary to choose for the periodic function A(t) 
the following function: 

A (t) = 8-l (t - 6~) z* (t - 6~) (2.9) 

where z*(t) is a matrix whose elements are determined by Expressions 
(1.32). 

For such a choice of the periodic function A(t), Expression (2.8) will 
take the form 

2 (t) = 8 (t) e-1 (t - fh) ,e (t - fix) + 
0 

+ze (t)e-l(t-or + jq~(t-fh+j~-~) 
i=l 

(2.10) 

Let us introduce the function 

N (t, jr) = e (t) e-1 (t - 6t -)- jr) (2.11) 

which represents a matrix weight function of the considered system of 
difference equations. 

Expression (2.10) can be represented as 

2 (t) = N (t, 0) z* (t - 62) + i N (t, jz) x (t - 62 + jz - T) (2.12) 
j=l 

The elements of the matrix z(t) will have the form 
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2, (t) = i Nsh.(t, 0) Zhi* (t - St) + 
k=l 

P 8 

(s = 1, . . . , r) (2.13) 

Expressions (2.13) represent the solution of the matrix difference 
equation (2.1) which coincides with the given matrix z*(t) in the inter- 
val 0 < t < 7. 

3. Determination of the weight function for a system of 
difference equations. The determination of the fundamental matrix 
e(t), which is needed for the construction of the weight function N(t, 
jr), is a quite difficult problem. For fixed values of the argument 
t = tl, the weight function N(t,, jr) can be constructed with the aid of 
the solution of the adjoint system of difference equations, as will be 
shown below. 

At the instant of time t = tl the solution functions z,(t) have, in 
accordance with (2.13), the following values: 

r 

z, (tl) = 2 Nsk (tl, 0) zh.‘: (h - 61~) + 
k=l 

r 5, 

‘- 2 2 Nsk (tl, Jo) X,,. (h - 61~ -k I’7 - T) (s=l,...,r) (3.1) 
!i=l i=l 

Expression (3.1) contains the functions Nsk(tl, jr) which are the 
elements of the matrix weight function for a fixed value of the argument, 
t = tl. In order to determine them, let us consider the adjoint matrix 
equation 

2 (t) + UT (t) 2 (t + T) = 0 (3.2) 

Here UT(t) is the transposed matrix of the matrix u(t). 

lhe matrix equation (3.2) is equivalent to the following system of 
scalar equations: 

Zk (t) + 2 a1.k (t) 21 (t + 4 = 0 
I=1 

(k = 1, . . , r) (3.3) 

hlultiplying the pth equation (p = 1, . . . . r) of the original system 
of difference equations (2.1) 
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ZP (t + T) + lz qLz (t) zz (t) = LX, (t) 
I=1 

by Z,<t + r), and the vth equation (Y = 1, . . . , r) of the system (3.3) 
by z,(t), and adding the terms of the equations thus obtained, we derive 
the following relation: 

P P 
A 2 Zk (t) zk (t) = 2 zh. (t + z) xh. (t) (3.4) 

k=l k-1 

From the relation (3.4) it follows that 

k & (t) zk (t) = i i Zk (1 + -c - iz) Xk (t - iz) + B (t) (3.5) 
k=L i=l k=l 

where B(t) is a periodic function to be determined. 

Changing, as was done above, the sumnation index i by means of the 
formula i = fi - j + 1, we transform the relation (3.5) to the form 

i zk (t) Z/,. (t) = i i & (t - 62 + iT> xk (t - 62 + jt - T) + B (t) 
k=l k=l j=l 

(3.6) 

In the interval 0 < t < 7 the first term on the right-hand side of 
the relation (3.6) vanishes. In order that the second term on the right 
of Equation (3.6) may coincide with the left-hand side of (3.6) in this 
interval, it is necessary to select the periodic function B(t) in the 
following way: 

B (t) = i Z,,* (t - Or) zk* (t - ST) (3.7) 
Ii=1 

where Zk*(t) is a matrix which is defined only on the interval 0 < t < T, 
and coincides in this interval with the matrix Z(t). It is obvious that 
for the possibility of the construction of a solution of the adjoint 
matrix equation (3.2), it is necessary to know in advance the solution 
matrix Z(t) in the interval 0 < t < T . 

It may turn out that it is necessary, as in the case below, to give 
in advance the matrix Z(t) not on the initial time interval (0, T) but 
on a different interval (jr, (j + 1)~). Because of the difference equa- 
tions (3.3) such a specification determines the matrix Z(t) uniquely on 
the initial interval (0, r ). 
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Substituting Expression (3.7) for B(t) into (3.6), we obtain 

i; Zk (t) Zk (t) = i zh.* (t - ST) z/(* (t - ST) + 

/;=1 k=l 

+ f: i Zk (t - 62 + jT) Xk (t - 6t + jz - T) (3.8) 
I;-;1 j=l 

In accordance with what was said above, .Zh(t) = Z,*(t) when 0 < t < z. 
Hence, one may omit the asterisk on Zh* in the relation (3.8). 

For the fixed moment t = tl the relation (3.8) will take the form 

i Zk (h) zh. (h) = i Zk (t1 - 61t) z&.* (t1 - OlT) + 

k=l ICE, 

$ i 2 zh. (t1 - 61t + jr) xh. (t1 - 61t + jz - T) (3.9) 
k=l j=l 

'lhe functions Zk(t) are solutions of the system of linear difference 
equations (3.3). Let us require that these solutions satisfy also the 
conditions 

2, (1) = 1, 2, (t) = 0 @=I,..., s-1, s-/-l,...,r) (3.10) 

for every value of t on the interval617 < t < (Sl+ 1)r. 

Under the conditions (3.10), the relation (3.9) takes on the form 

zs (t1) = 2 Zk (t1 - 61t) it,<*: (t1 - lY1t) + 

k=l 

(3.11) 

where the index s is fixed. 

Comparing bressions (3.11) and (3.1), one can see 16 1 that for a 
fixed s 

& (II, jT) = Zk (h - fht + jT) (/i = 1,. . . , r) (3.12) 

the matrices Zh are solutions of the adjoint system of difference equa- 
tions (3.3) which satisfy the conditions (3.10) at any time t in the 
interval61r < t < (61+ 1)r. 
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4. Application of difference equations with a discrete 
argument. Setting E = 0 in the difference equations (1.26), we obtain 

2” ((n + 1) 4 + B U”k (nr) Zk (m) = x, (m) ( =;*“+ (4.1) 
k=l 

). .,r 

In accordance with (1.15) and (1.16) we now have 

avh. (4 = - i M,, ((n -t 1) T, nr + Zl) LpLk (nz + Tl, nz) (4.2) 
p=1 

Xv (nr) = i M,, ((n + 1) 

n7+ 7, r 

t, nz -t 4 2 Lpk (nz + ~1, E) xk (E) 6 + 
LI=l nr k=l 

(n +1)7 P 

(4.3) 

‘Ihe relations (4.3) connect the values of the solution functions 
ZJV = 1, . ..) r) at the time instances nr and (n + 1)r (n is an arbi- 
trary integer). ‘Ihese instances represent the initial moments of time 
for two successive periods of alternation. lhese relations, which are 
valid for integer values n, represent difference equations with discrete 
arguments. Thus, the solutions of Equations (4.1) determine sequences of 
values of the phase coordinates z,, at discrete points, which are the 
boundaries of the periods of alternation, i.e. the instants of time t = 
nr(n = 1, 2, . . . ). ‘Ihese solutions can be obtained by the method given in 
Sections 2 and 3, by replacing (4.1) by the system of difference equations 

2, (t + T) + i C&k0 (t) zk (t) = xv” (t) (v = 1, . . . , r) (4.4) 
k=l 

where u,,“(t) and X,,‘(t) are step functions, which for 6 r < t < (a+ 1)r 
retain the values ~~k(0.r ) and X,( 6 r ), respectively. Here, just as above 
in (1.29)) we denote by 6 the integer part of t/r. ‘Ihe solution of Aqua- 
tions (4.4) for values of t that are multiples of the alternation period 
r is given, in accordance with (2.13)) by 

z, (62) = i N,k(6z, 0) zk (0) + i i I\;iyk (62, jr) xk (j7 - T) 
k=l li=l j=l 

(v=l,...,r) (4.5) 

In some cases, in particular, when (1.1) and (1.6) represent systems 
of differential equations with constant coefficients, the finding of 
Expressions (4.5) does not present any difficulties. 
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During the time interval 6 r < t < (6+ 1)r the phase coordinates zy 
will change because of (1.4) and (1.9), in accordance with the law 

z., (I) = e.,** (t) (4.0) 
where 

From (4.5) and (4.6) it follows that for any time t the values of the 
phase coordinates will be 

z, (t) = z., (VT) -;- 2;' (t)[l(t-l?T )-i(t-+T-T--)1 (\‘-= I., , I’, (4.8) 

5. Alternating systems of linear differential equations 
with constant coefficients. In this case the matrix weight func- 

tions of the systems of differential equations (1.1) and (1.4) take on 
the form 

L (t, 8 = L (t - EJ, AlI (I, j) = ‘11 (t - F,) ( .-I 1) 

Ihe coefficients aVk (nr + E) of the difference equations (1.26), which 
are determined by means of Expressions (1.27), (1.15) and (1.24), are 
transformed in accordance with (5.1) into the form 

CL,,h.(nT {- E) z - 2 2 L,,j (E) -I/j!,, (Tz) L:,k (T1 - E) ‘I (TI+ - 8) - 

where 

T* = T  - T1 (5.3) 
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It follows from (5.2) that for any value of t = 6r + 6 where, in 
accordance with (1.29),6 is the integer part of t/r, and 6 lies in the 
interval 0 < 6 < r, the functions c,,k satisfy the condition cVk(t + r) = 
'z/k(t). 

nuls , for alternating systems of linear differential equations with 
constant coefficients, the coefficients ayk(t) of the difference equa- 
tions (1.30) are periodic functions of time with a period equal to the 
period of alternation r. 

'Ihe functions X,,(t) on the right-hand sides of the difference equa- 
tions (1.30) take on the form 

xv (t) = x,* (62 + E) 1 (r, + -E) + x.,** (IYt + E) 1 (E - r1 +) (5.4) 

where, in accordance with (1.16) and (1.25) 

x,* (62 j- e) = i i 
7, r 

Lvj (&) n/r,ip (r2) \ 2 L&!i(rl - 5) xk (6r c j=l ,'=I E Ii=1 

+ i;Lj (&) S i Mjp Cr - 5) sy Csr + 5Jd5 + 
j=l 7‘ p.=1 

+ \ 2 Lvj(r + E - 5) Xj (fit + 5) dC 

5) d5 -I- 

(5.5) 

E P 

- -  
t  

Sr 

,  A!!,j (E -  j) Sj ( t i t  + T + 5) dc (5.6) 
7, j=l 

The difference equations with a discrete argument (4.1) will in this 
case be equations with constant coefficients. Indeed, setting 6 = 0 in 
Expressions (5.21, we obtain 

a,,;(m) = a,&, auk = - 2 MY&Z) Lpk (r,) (5.7) 
p=1 

Setting 6 = 0 in (5.4), we obtain the following expressions for the 
functions X,,(nr), which enter into the right-hand sides of the differ- 
ence equations (4.1): 
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(5.8) 

We note that in the particular case when rk(t) (k = 1, . . . . r) and 
s 
fl 

(t) (p = 1, . . . . r) are step functions which preserve their values on 
t e intervals (nr, RT + rl) and (nr + r 1, (n + l)r), respectively, the 
functions X,(nr), in accordance with (5.8), take on the form 

x, (m) = 2 [evh.x.h. (nz) + Z&g (m f Tl)] (v = 1,. .,r) (5.9) 

k=l 

where e,k and I,,, are some constant coefficients determined by the 
following expressions: 

evh. = i MYP(T2) S’L,., (Tl - j) dj, l”k = i -Malt - 9 dC (5.10) 

ll=l 0 +I 

'Ibe functions z,**(t) which determine the law of change of the phase 
coordinates in the time interval 6 r < t < (19+ l)r, will be, in accord- 
ance with (4.7) and (5.1), of the following form: 

+ 2 M”, (8 - Tl) Lph. (Tl) 1 (E - T1+ )] 3/i (6-c) + 

+ \ 2 L,,< (E - 5) xk (flT -!- 5) d5 1 (Tl,. - E) f 

(v = I,. ., r) ( .-J I 1) 

6. On the problem of the determination of the position of 
a system with alternation in a phase space on the basis of 
the deviations of one of the phase coordinates. In many auto- 
matic control systems the optimal algorithm of control is realized on 
the basis of the information regarding the instantaneous position of the 
control system in the phase space [7,8 1. 
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It is frequently difficult to obtain such information because of the 
unavailability of the measurements of some phase coordinate, and at 
times because of the absence of knowledge regarding the position of the 
orientation system relative to which the position of the control system 
is to be determined. 

In this connection there arises the necessity of the development of 
indirect methods for obtaining information on the position of the control 
system in the phase space [9 1. Let us pass to the presentation of one 
such method for a system with alternation. 

It follows from (2.13) that at the instant t = 6.1 , where 6is some 
integer, the phase coordinate z,, takes on the following value: 

Let us suppose that the phase coordinate zs can be measured. Assuming 
that the initial reading is not known, we measure the deviation of the 
phase coordinate zg from some arbitrarily chosen origin 

S (ti*t) = S* + 2s (sit) (i = 1, . . ., r + 1) VW 

Here S* is the deviation of the new reading origin 
reading origin. Denoting by Lp the difference between 
measurements 

s ($L+ 1 T) - s (6,T) = L,, (p = 1, . . ., 

we obtain the following relations: 

from the initial 
two successive 

r) (6.3) 

2, (6,+ IT) - 2, (Spt) == L, (p = 1, . . ., r) (6.4) 

which do not contain the unknown quantity S*. 

Substituting the values zs(GP+ 1 
(6.11, 

r) and z,($r) in accordance with 
we obtain a system of linear algebraic equations in the initial 

deviations ~~(0) 

2 [i-b’& (6,,+ l’t, 0) - Iv,, (*,r, O)l z/t’ (O) = (p=l,...,r) (6.5) 
k=l 

= L,+ i 5 n’,,(f,,r, j’@x,(jt - t)- i s’~1N6k(+W+ lT? iz) xh. (ir - ') 

h'=l j=l k=l j=l 

With E&rations (6.5) one can determine the initial values of the 
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phase coordinates t,(O) (k = 1, . . . . r), after which one can, with the 
aid of Formulas (2.13), determine the values of the phase coordinates 
z,(t) (V = 1, . . . . t-1 for any time t. 
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